index b8a2444..65fe479 100644 (file)
@@ -72,37 +72,37 @@ For these exercises, assume that `LIST` is the result of evaluating:
(make-list a (make-list b (make-list c (make-list d (make-list e empty)))))

-1.     What would be the result of evaluating:
+<OL start=16>
+<LI>What would be the result of evaluating (see [[Assignment 2 hint 1]] for a hint):

-               LIST make-list empty
+       LIST make-list empty

-[[Assignment 2 hint 1]]
+<LI>Based on your answer to question 16, how might you implement the **map** function? Expected behavior:

-2.     Based on your answer to question 1, how might you implement the **map** function? Expected behavior:
+       map f LIST <~~> (make-list (f a) (make-list (f b) (make-list (f c) (make-list (f d) (make-list (f e) empty)))))

-       <pre><code>map f LIST <~~> (make-list (f a) (make-list (f b) (make-list (f c) (make-list (f d) (make-list (f e) empty)))))</code></pre>
+<LI>Based on your answer to question 16, how might you implement the **filter** function? The expected behavior is that:

-3.     Based on your answer to question 1, how might you implement the **filter** function? The expected behavior is that:
+       filter f LIST

-               filter f LIST
+should evaluate to a list containing just those of `a`, `b`, `c`, `d`, and `e` such that `f` applied to them evaluates to `true`.

-       should evaluate to a list containing just those of `a`, `b`, `c`, `d`, and `e` such that `f` applied to them evaluates to `true`.
+<LI>How would you implement map using the either the version 1 or the version 2 implementation of lists?

-4. How would you implement map using the either the version 1 or the version 2 implementation of lists?
+<LI>Our version 3 implementation of the numbers are usually called "Church numerals". If `m` is a Church numeral, then `m s z` applies the function `s` to the result of applying `s` to ... to `z`, for a total of *m* applications of `s`, where *m* is the number that `m` represents or encodes.

-5. Our version 3 implementation of the numbers are usually called "Church numerals". If `m` is a Church numeral, then `m s z` applies the function `s` to the result of applying `s` to ... to `z`, for a total of *m* applications of `s`, where *m* is the number that `m` represents or encodes.
+Given the primitive arithmetic functions above, how would you implement the less-than-or-equal function? Here is the expected behavior, where `one` abbreviates `succ zero`, and `two` abbreviates `succ (succ zero)`.

-       Given the primitive arithmetic functions above, how would you implement the less-than-or-equal function? Here is the expected behavior, where `one` abbreviates `succ zero`, and `two` abbreviates `succ (succ zero)`.
+       less-than-or-equal zero zero ~~> true
+       less-than-or-equal zero one ~~> true
+       less-than-or-equal zero two ~~> true
+       less-than-or-equal one zero ~~> false
+       less-than-or-equal one one ~~> true
+       less-than-or-equal one two ~~> true
+       less-than-or-equal two zero ~~> false
+       less-than-or-equal two one ~~> false
+       less-than-or-equal two two ~~> true

-               less-than-or-equal zero zero ~~> true
-               less-than-or-equal zero one ~~> true
-               less-than-or-equal zero two ~~> true
-               less-than-or-equal one zero ~~> false
-               less-than-or-equal one one ~~> true
-               less-than-or-equal one two ~~> true
-               less-than-or-equal two zero ~~> false
-               less-than-or-equal two one ~~> false
-               less-than-or-equal two two ~~> true
-
-       You'll need to make use of the predecessor function, but it's not important to understand how the implementation we gave above works. You can treat it as a black box.
+You'll need to make use of the predecessor function, but it's not essential to understand how the implementation we gave above works. You can treat it as a black box.
+</OL>