index 4f80620..5d75a85 100644 (file)
@@ -1,3 +1,6 @@
+For these assignments, you'll probably want to use our [[lambda evaluator]] to check your work. This accepts any grammatical lambda expression and reduces it to normal form, when possible.
+
+
More Lambda Practice
--------------------

More Lambda Practice
--------------------

@@ -30,6 +33,36 @@ Reduce to beta-normal forms:
<LI>`(\x y z. x z (y z)) (\u v. u)`
</OL>

<LI>`(\x y z. x z (y z)) (\u v. u)`
</OL>

+Combinatory Logic
+-----------------
+
+Reduce the following forms, if possible:
+
+<OL start=16>
+<LI> `Kxy`
+<LI> `KKxy`
+<LI> `KKKxy`
+<LI> `SKKxy`
+<LI> `SIII`
+<LI> `SII(SII)`
+
+<LI> Give Combinatory Logic combinators that behave like our boolean functions.
+  You'll need combinators for `true`, `false`, `neg`, `and`, `or`, and `xor`.
+</OL>
+
+Using the mapping specified in the lecture notes,
+translate the following lambda terms into combinatory logic:
+
+<OL start=23>
+<LI> `\x.x`
+<LI> `\xy.x`
+<LI> `\xy.y`
+<LI> `\xy.yx`
+<LI> `\x.xx`
+<LI> `\xyz.x(yz)`
+<LI> For each translation, how many I's are there?  Give a rule for
+   describing what each I corresponds to in the original lambda term.
+</OL>

Lists and Numbers
-----------------

Lists and Numbers
-----------------
@@ -56,6 +89,7 @@ The `junk` in `extract-head` is what you get back if you evaluate:
As we said, the predecessor and the extract-tail functions are harder to define. We'll just give you one implementation of these, so that you'll be able to test and evaluate lambda-expressions using them in Scheme or OCaml.

<pre><code>predecesor &equiv; (\shift n. n shift (make-pair zero junk) get-second) (\pair. pair (\fst snd. make-pair (successor fst) fst))
As we said, the predecessor and the extract-tail functions are harder to define. We'll just give you one implementation of these, so that you'll be able to test and evaluate lambda-expressions using them in Scheme or OCaml.

<pre><code>predecesor &equiv; (\shift n. n shift (make-pair zero junk) get-second) (\pair. pair (\fst snd. make-pair (successor fst) fst))
+
extract-tail &equiv; (\shift lst. lst shift (make-pair empty junk) get-second) (\hd pair. pair (\fst snd. make-pair (make-list hd fst) fst))</code></pre>

The `junk` is what you get back if you evaluate:
extract-tail &equiv; (\shift lst. lst shift (make-pair empty junk) get-second) (\hd pair. pair (\fst snd. make-pair (make-list hd fst) fst))</code></pre>

The `junk` is what you get back if you evaluate:
@@ -73,7 +107,7 @@ For these exercises, assume that `LIST` is the result of evaluating:

<OL start=16>

<OL start=16>
-<LI>What would be the result of evaluating (see [[Assignment 2 hint 1]] for a hint):
+<LI>What would be the result of evaluating (see [[hints/Assignment 2 hint]] for a hint):

LIST make-list empty

LIST make-list empty

@@ -87,7 +121,7 @@ For these exercises, assume that `LIST` is the result of evaluating:

should evaluate to a list containing just those of `a`, `b`, `c`, `d`, and `e` such that `f` applied to them evaluates to `true`.

should evaluate to a list containing just those of `a`, `b`, `c`, `d`, and `e` such that `f` applied to them evaluates to `true`.

-<LI>How would you implement map using the either the version 1 or the version 2 implementation of lists?
+<LI>What goes wrong when we try to apply these techniques using the version 1 or version 2 implementation of lists?

<LI>Our version 3 implementation of the numbers are usually called "Church numerals". If `m` is a Church numeral, then `m s z` applies the function `s` to the result of applying `s` to ... to `z`, for a total of *m* applications of `s`, where *m* is the number that `m` represents or encodes.

<LI>Our version 3 implementation of the numbers are usually called "Church numerals". If `m` is a Church numeral, then `m s z` applies the function `s` to the result of applying `s` to ... to `z`, for a total of *m* applications of `s`, where *m* is the number that `m` represents or encodes.

@@ -103,6 +137,6 @@ Given the primitive arithmetic functions above, how would you implement the less
less-than-or-equal two one ~~> false
less-than-or-equal two two ~~> true

less-than-or-equal two one ~~> false
less-than-or-equal two two ~~> true

-You'll need to make use of the predecessor function, but it's not important to understand how the implementation we gave above works. You can treat it as a black box.
+You'll need to make use of the predecessor function, but it's not essential to understand how the implementation we gave above works. You can treat it as a black box.
</OL>

</OL>