cat theory tweaks
[lambda.git] / advanced_topics / monads_in_category_theory.mdwn
index a5e6f97..f26e2cd 100644 (file)
@@ -45,7 +45,7 @@ When a morphism `f` in category <b>C</b> has source `C1` and target `C2`, we'll
 To have a category, the elements and morphisms have to satisfy some constraints:
 
 <pre>
-       (i) the class of morphisms has to be closed under composition: where f:C1&rarr;C2 and g:C2&rarr;C3, g o f is also a morphism of the category, which maps C1&rarr;C3.
+       (i) the class of morphisms has to be closed under composition: where f:C1&rarr;C2 and g:C2&rarr;C3, g &ordm; f is also a morphism of the category, which maps C1&rarr;C3.
        (ii) composition of morphisms has to be associative
        (iii) every element E of the category has to have an identity morphism 1<sub>E</sub>, which is such that for every morphism f:C1&rarr;C2: 1<sub>C2</sub> o f = f = f o 1<sub>C1</sub>
 </pre>
@@ -61,12 +61,12 @@ Some examples of categories are:
 
 *      any monoid `(S,*,z)` generates a category with a single element `x`; this `x` need not have any relation to `S`. The members of `S` play the role of *morphisms* of this category, rather than its elements. All of these morphisms are understood to map `x` to itself. The result of composing the morphism consisting of `s1` with the morphism `s2` is the morphism `s3`, where `s3=s1*s2`. The identity morphism for the (single) category element `x` is the monoid's identity `z`.
 
-*      a **preorder** is a structure `(S, <=)` consisting of a reflexive, transitive, binary relation on a set `S`. It need not be connected (that is, there may be members `x`,`y` of `S` such that neither `x<=y` nor `y<=x`). It need not be anti-symmetric (that is, there may be members `s1`,`s2` of `S` such that `s1<=s2` and `s2<=s1` but `s1` and `s2` are not identical). Some examples:
+*      a **preorder** is a structure `(S, &le;)` consisting of a reflexive, transitive, binary relation on a set `S`. It need not be connected (that is, there may be members `x`,`y` of `S` such that neither `x&le;y` nor `y&le;x`). It need not be anti-symmetric (that is, there may be members `s1`,`s2` of `S` such that `s1&le;s2` and `s2&le;s1` but `s1` and `s2` are not identical). Some examples:
 
        *       sentences ordered by logical implication ("p and p" implies and is implied by "p", but these sentences are not identical; so this illustrates a pre-order without anti-symmetry)
        *       sets ordered by size (this illustrates it too)
 
-       Any pre-order `(S,<=)` generates a category whose elements are the members of `S` and which has only a single morphism between any two elements `s1` and `s2`, iff `s1<=s2`.
+       Any pre-order <code>(S,&le;)</code> generates a category whose elements are the members of `S` and which has only a single morphism between any two elements `s1` and `s2`, iff <code>s1&le;s2</code>.
 
 
 Functors