cat theory tweaks
[lambda.git] / advanced_topics / monads_in_category_theory.mdwn
index 53a6611..1590619 100644 (file)
@@ -19,35 +19,41 @@ corrections.
 
 Monoids
 -------
-A **monoid** is a structure `(S, *, z)` consisting of an associative binary operation `*` over some set `S`, which is closed under `*`, and which contains an identity element `z` for `*`. That is:
+A **monoid** is a structure <code>(S,&#8902;,z)</code> consisting of an associative binary operation <code>&#8902;</code> over some set `S`, which is closed under <code>&#8902;</code>, and which contains an identity element `z` for <code>&#8902;</code>. That is:
 
 
 <pre>
        for all s1, s2, s3 in S:
-       (i) s1*s2 etc are also in S
-       (ii) (s1*s2)*s3 = s1*(s2*s3)
-       (iii) z*s1 = s1 = s1*z
+       (i) s1&#8902;s2 etc are also in S
+       (ii) (s1&#8902;s2)&#8902;s3 = s1&#8902;(s2&#8902;s3)
+       (iii) z&#8902;s1 = s1 = s1&#8902;z
 </pre>
 
 Some examples of monoids are:
 
-*      finite strings of an alphabet `A`, with `*` being concatenation and `z` being the empty string
-*      all functions `X&rarr;X` over a set `X`, with `*` being composition and `z` being the identity function over `X`
-*      the natural numbers with `*` being plus and `z` being `0` (in particular, this is a **commutative monoid**). If we use the integers, or the naturals mod n, instead of the naturals, then every element will have an inverse and so we have not merely a monoid but a **group**.)
-*      if we let `*` be multiplication and `z` be `1`, we get different monoids over the same sets as in the previous item.
+*      finite strings of an alphabet `A`, with <code>&#8902;</code> being concatenation and `z` being the empty string
+*      all functions <code>X&rarr;X</code> over a set `X`, with <code>&#8902;</code> being composition and `z` being the identity function over `X`
+*      the natural numbers with <code>&#8902;</code> being plus and `z` being `0` (in particular, this is a **commutative monoid**). If we use the integers, or the naturals mod n, instead of the naturals, then every element will have an inverse and so we have not merely a monoid but a **group**.)
+*      if we let <code>&#8902;</code> be multiplication and `z` be `1`, we get different monoids over the same sets as in the previous item.
 
 Categories
 ----------
 A **category** is a generalization of a monoid. A category consists of a class of **elements**, and a class of **morphisms** between those elements. Morphisms are sometimes also called maps or arrows. They are something like functions (and as we'll see below, given a set of functions they'll determine a category). However, a single morphism only maps between a single source element and a single target element. Also, there can be multiple distinct morphisms between the same source and target, so the identity of a morphism goes beyond its "extension."
 
-When a morphism `f` in category <b>C</b> has source `C1` and target `C2`, we'll write `f:C1&rarr;C2`.
+When a morphism `f` in category <b>C</b> has source `C1` and target `C2`, we'll write <code>f:C1&rarr;C2</code>.
 
 To have a category, the elements and morphisms have to satisfy some constraints:
 
 <pre>
-       (i) the class of morphisms has to be closed under composition: where f:C1&rarr;C2 and g:C2&rarr;C3, g &#8728; f is also a morphism of the category, which maps C1&rarr;C3.
-       (ii) composition of morphisms has to be associative
-       (iii) every element E of the category has to have an identity morphism 1<sub>E</sub>, which is such that for every morphism f:C1&rarr;C2: 1<sub>C2</sub> &#8728; f = f = f &#8728; 1<sub>C1</sub>
+       (i)   the class of morphisms has to be closed under composition:
+             where f:C1&rarr;C2 and g:C2&rarr;C3, g &#8728; f is also a
+             morphism of the category, which maps C1&rarr;C3.
+
+       (ii)  composition of morphisms has to be associative
+
+       (iii) every element E of the category has to have an identity
+             morphism 1<sub>E</sub>, which is such that for every morphism
+             f:C1&rarr;C2: 1<sub>C2</sub> &#8728; f = f = f &#8728; 1<sub>C1</sub>
 </pre>
 
 These parallel the constraints for monoids. Note that there can be multiple distinct morphisms between an element `E` and itself; they need not all be identity morphisms. Indeed from (iii) it follows that each element can have only a single identity morphism.
@@ -59,7 +65,7 @@ Some examples of categories are:
 
 *      Categories whose elements are sets and whose morphisms are functions between those sets. Here the source and target of a function are its domain and range, so distinct functions sharing a domain and range (e.g., sin and cos) are distinct morphisms between the same source and target elements. The identity morphism for any element/set is just the identity function for that set.
 
-*      any monoid `(S,*,z)` generates a category with a single element `x`; this `x` need not have any relation to `S`. The members of `S` play the role of *morphisms* of this category, rather than its elements. All of these morphisms are understood to map `x` to itself. The result of composing the morphism consisting of `s1` with the morphism `s2` is the morphism `s3`, where `s3=s1*s2`. The identity morphism for the (single) category element `x` is the monoid's identity `z`.
+*      any monoid <code>(S,&#8902;,z)</code> generates a category with a single element `x`; this `x` need not have any relation to `S`. The members of `S` play the role of *morphisms* of this category, rather than its elements. All of these morphisms are understood to map `x` to itself. The result of composing the morphism consisting of `s1` with the morphism `s2` is the morphism `s3`, where <code>s3=s1&#8902;s2</code>. The identity morphism for the (single) category element `x` is the monoid's identity `z`.
 
 *      a **preorder** is a structure `(S, &le;)` consisting of a reflexive, transitive, binary relation on a set `S`. It need not be connected (that is, there may be members `x`,`y` of `S` such that neither `x&le;y` nor `y&le;x`). It need not be anti-symmetric (that is, there may be members `s1`,`s2` of `S` such that `s1&le;s2` and `s2&le;s1` but `s1` and `s2` are not identical). Some examples: