`x:α`

" represents an expression `x`
whose type is `α`

.
Then System F can be specified as follows:
System F:
---------
types τ ::= c | α | τ1 -> τ2 | ∀α.τ
expressions e ::= x | λx:τ.e | e1 e2 | Λα.e | e [τ]
In the definition of the types, "`c`" is a type constant. Type
constants play the role in System F that base types play in the
simply-typed lambda calculus. So in a lingusitics context, type
constants might include `e` and `t`. "α" is a type variable. In
various discussions, type variables are distinguished by using letters
from the greek alphabet (α, β, etc.), as we do here, or by
using capital roman letters (X, Y, etc.), or by adding a tick mark
(`'a`, `'b`, etc.), as in OCaml. "`τ1 -> τ2`" is the type of a
function from expressions of type `τ1` to expressions of type `τ2`.
And "`∀α.τ`" is called a universal type, since it universally
quantifies over the type variable `α`. You can expect that in
`∀α.τ`, the type `τ` will usually have at least one free occurrence of
`α` somewhere inside of it.
In the definition of the expressions, we have variables "`x`" as usual.
Abstracts "`λx:τ.e`" are similar to abstracts in the simply-typed lambda
calculus, except that they have their shrug variable annotated with a
type. Applications "`e1 e2`" are just like in the simply-typed lambda calculus.
In addition to variables, abstracts, and applications, we have two
additional ways of forming expressions: "`Λα.e`" is called a *type
abstraction*, and "`e [τ]`" is called a *type application*. The idea
is that `Λ`

is a capital `λ`

: just
like the lower-case `λ`

, `Λ`

binds
variables in its body, except that unlike `λ`

,
`Λ`

binds type variables instead of expression
variables. So in the expression
`Λ α (λ x:α. x)`

the `Λ`

binds the type variable `α` that occurs in
the `λ`

abstract.
This expression is a polymorphic version of the identity function. It
defines one general identity function that can be adapted for use with
expressions of any type. In order to get it ready to apply this
identity function to, say, a variable of type boolean, just do this:
`(Λ α (λ x:α. x)) [t]`

This type application (where `t` is a type constant for Boolean truth
values) specifies the value of the type variable `α`. Not
surprisingly, the type of the expression that results from this type
application is a function from Booleans to Booleans:
`((Λα (λ x:α . x)) [t]): (b->b)`

Likewise, if we had instantiated the type variable as an entity (base
type `e`), the resulting identity function would have been a function
of type `e -> e`:
`((Λα (λ x:α. x)) [e]): (e->e)`

Clearly, for any choice of a type `α`, the identity function can be
instantiated as a function from expresions of type `α` to expressions
of type `α`. In general, then, the type of the uninstantiated
(polymorphic) identity function is
`(Λα (λx:α . x)): (∀α. α->α)`

Pred in System F
----------------
We saw that the predecessor function couldn't be expressed in the
simply-typed lambda calculus. It *can* be expressed in System F,
however. Here is one way:
let N = ∀α.(α->α)->α->α in
let Pair = (N->N->N)->N in
let zero = Λα. λs:α->α. λz:α. z in
let fst = λx:N. λy:N. x in
let snd = λx:N. λy:N. y in
let pair = λx:N. λy:N. λz:N->N->N. z x y in
let succ = λn:N. Λα. λs:α->α. λz:α. s (n [α] s z) in
let shift = λp:Pair. pair (succ (p fst)) (p fst) in
let pred = λn:N. n [Pair] shift (pair zero zero) snd in
pre (suc (suc (suc zero)));
[If you want to run this code in
[[Benjamin Pierce's type-checker and evaluator for
System F|http://www.cis.upenn.edu/~bcpierce/tapl/index.html]], the
relevant evaluator is called "fullpoly", and you'll need to
truncate the names of "suc(c)" and "pre(d)", since those are
reserved words in Pierce's system.]
Exercise: convince yourself that `zero` has type `N`.
[By the way, in order to keep things as simple as possible here, the
types used in this definition of the ancillary functions given here
are not as general as they could be; see the discussion below of type
inference and principal types in the OCaml type system.]
The key to the extra expressive power provided by System F is evident
in the typing imposed by the definition of `pred`. The variable `n`
is typed as a Church number, i.e., as `N ≡ ∀α.(α->α)->α->α`

.
The type application `n [Pair]` instantiates `n` in a way that allows
it to manipulate ordered pairs: `n [Pair]: (Pair->Pair)->Pair->Pair`.
In other words, the instantiation turns a Church number into a certain
pair-manipulating function, which is the heart of the strategy for
this version of computing the predecessor function.
Could we try to accommodate the needs of the predecessor function by
building a system for doing Church arithmetic in which the type for
numbers always manipulated ordered pairs? The problem is that the
ordered pairs we need here are pairs of numbers. If we tried to
replace the type for Church numbers with a concrete (simple) type, we
would have to replace each `N` with the type for Pairs, `(N -> N -> N)
-> N`. But then we'd have to replace each of these `N`'s with the
type for Church numbers, which we're imagining is `(Pair -> Pair) ->
Pair -> Pair`. And then we'd have to replace each of these `Pairs`'s
with... ad infinitum. If we had to choose a concrete type built
entirely from explicit base types, we'd be unable to proceed.
[See Benjamin C. Pierce. 2002. *Types and Programming Languages*, MIT
Press, chapter 23.]
Typing ω
--------------
In fact, unlike in the simply-typed lambda calculus,
it is even possible to give a type for ω in System F.
`ω = λx:(∀α.α->α). x [∀α.α->α] x`

In order to see how this works, we'll apply ω to the identity
function.
`ω id ≡ (λx:(∀α.α->α). x [∀α.α->α] x) (Λα.λx:α.x)`

Since the type of the identity function is `∀α.α->α`, it's the
right type to serve as the argument to ω. The definition of
ω instantiates the identity function by binding the type
variable `α` to the universal type `∀α.α->α`. Instantiating the
identity function in this way results in an identity function whose
type is (in some sense, only accidentally) the same as the original
fully polymorphic identity function.
So in System F, unlike in the simply-typed lambda calculus, it *is*
possible for a function to apply to itself!
Does this mean that we can implement recursion in System F? Not at
all. In fact, despite its differences with the simply-typed lambda
calculus, one important property that System F shares with the
simply-typed lambda calculus is that they are both strongly
normalizing: *every* expression in either system reduces to a normal
form in a finite number of steps.
Not only does a fixed-point combinator remain out of reach, we can't
even construct an infinite loop. This means that although we found a
type for ω, there is no general type for Ω ≡ ω
ω. In fact, it turns out that no Turing complete system can be
strongly normalizing, from which it follows that System F is not
Turing complete.
## Polymorphism in natural language
Is the simply-typed lambda calclus enough for analyzing natural
language, or do we need polymorphic types? Or something even more expressive?
The classic case study motivating polymorphism in natural language
comes from coordination. (The locus classicus is Partee and Rooth
1983.)
Type of the arguments of "and":
Ann left and Bill left. t
Ann left and slept. e->t
Ann read and reviewed the book. e->e->t
Ann and Bill left. (e->t)-t (i.e, generalize quantifiers)
In English (likewise, many other languages), *and* can coordinate
clauses, verb phrases, determiner phrases, transitive verbs, and many
other phrase types. In a garden-variety simply-typed grammar, each
kind of conjunct has a different semantic type, and so we would need
an independent rule for each one. Yet there is a strong intuition
that the contribution of *and* remains constant across all of these
uses.
Can we capture this using polymorphic types?
Ann, Bill e
left, slept e -> t
read, reviewed e -> e -> t
With these basic types, we want to say something like this:
and:t->t->t = λl:t. λr:t. l r false
gen_and = Λα.Λβ.λf:(β->t).λl:α->β.λr:α->β.λx:α. f (l x) (r x)
The idea is that the basic *and* (the one defined in the first line)
conjoins expressions of type `t`. But when *and* conjoins functional
types (the definition in the second line), it builds a function that
distributes its argument across the two conjuncts and then applies the
appropriate lower-order instance of *and*.
and (Ann left) (Bill left)
gen_and [e] [t] and left slept
gen_and [e] [e->t] (gen_and [e] [t] and) read reviewed
Following the terminology of Partee and Rooth, this strategy of
defining the coordination of expressions with complex types in terms
of the coordination of expressions with less complex types is known as
Generalized Coordination, which is why we call the polymorphic part of
the definition `gen_and`.
In the first line, the basic *and* is ready to conjoin two truth
values. In the second line, the polymorphic definition of `gen_and`
makes explicit exactly how the meaning of *and* when it coordinates
verb phrases depends on the meaning of the basic truth connective.
Likewise, when *and* coordinates transitive verbs of type `e->e->t`,
the generalized *and* depends on the `e->t` version constructed for
dealing with coordinated verb phrases.
On the one hand, this definition accurately expresses the way in which
the meaning of the conjunction of more complex types relates to the
meaning of the conjunction of simpler types. On the other hand, it's
awkward to have to explicitly supply an expression each time that
builds up the meaning of the *and* that coordinates the expressions of
the simpler types. We'd like to have that automatically handled by
the polymorphic definition; but that would require writing code that
behaved differently depending on the types of its type arguments,
which goes beyond the expressive power of System F.
And in fact, discussions of generalized coordination in the
linguistics literature are almost always left as a meta-level
generalizations over a basic simply-typed grammar. For instance, in
Hendriks' 1992:74 dissertation, generalized coordination is
implemented as a method for generating a suitable set of translation
rules, which are in turn expressed in a simply-typed grammar.
There is some work using System F to express generalizations about
natural language: Ponvert, Elias. 2005. Polymorphism in English Logical
Grammar. In *Lambda Calculus Type Theory and Natural Language*: 47--60.
Not incidentally, we're not aware of any programming language that
makes generalized coordination available, despite is naturalness and
ubiquity in natural language. That is, coordination in programming
languages is always at the sentential level. You might be able to
evaluate `(delete file1) and (delete file2)`, but never `delete (file1
and file2)`.
We'll return to thinking about generalized coordination as we get
deeper into types. There will be an analysis in term of continuations
that will be particularly satisfying.
#Types in OCaml
OCaml has type inference: the system can often infer what the type of
an expression must be, based on the type of other known expressions.
For instance, if we type
# let f x = x + 3;;
The system replies with
val f : int -> int =