* [[!wikipedia Church encoding]] * [[!wikipedia Combinatory logic]] * [Combinatory logic](http://plato.stanford.edu/entries/logic-combinatory/) at the Stanford Encyclopedia of Philosophy * [[!wikipedia SKI combinatory calculus]] * [[!wikipedia B,C,K,W system]] * Jeroen Fokker, "The Systematic Construction of a One-combinator Basis for Lambda-Terms" Formal Aspects of Computing 4 (1992), pp. 776-780. * [Chris Barker's Iota and Jot](http://semarch.linguistics.fas.nyu.edu/barker/Iota/)

* [To Dissect a Mockingbird](http://dkeenan.com/Lambda/index.htm) * [Combinator Birds](http://www.angelfire.com/tx4/cus/combinator/birds.html) * [Les deux combinateurs et la totalite](http://www.paulbraffort.net/j_et_i/j_et_i.html) by Paul Braffort. ### Evaluation Order ### * [[!wikipedia Evaluation strategy]] * [[!wikipedia Eager evaluation]] * [[!wikipedia Lazy evaluation]] * [[!wikipedia Strict programming language]] ### Confluence, Normalization, Undecidability ### * [[!wikipedia Church-Rosser theorem]] * [[!wikipedia Normalization property]] * [[!wikipedia Turing completeness]]

* [Scooping the Loop Snooper](http://www.cl.cam.ac.uk/teaching/0910/CompTheory/scooping.pdf), a proof of the undecidability of the halting problem in the style of Dr Seuss by Geoffrey K. Pullum ### Recursion and the Y Combinator ### * [[!wikipedia Recursion (computer science) desc="Recursion"]] * [[!wikipedia Y combinator]] * [Chapter 9 from The Little Schemer](http://www.ccs.neu.edu/home/matthias/BTLS/sample.ps) on the Y Combinator "...and Again, and Again, and Again..." * [The Y combinator](http://mvanier.livejournal.com/2700.html) * [The Why of Y](http://www.dreamsongs.com/NewFiles/WhyOfY.pdf) * [The Y Combinator (Slight Return), or: How to Succeed at Recursion Without Really Recursing](http://mvanier.livejournal.com/2897.html) * [Y Combinator for Dysfunctional Non-Schemers](http://rayfd.wordpress.com/2007/05/06/y-combinator-for-dysfunctional-non-schemers/) * [The Y Combinator](http://www.ece.uc.edu/~franco/C511/html/Scheme/ycomb.html) * [The Y Combinator](http://dangermouse.brynmawr.edu/cs245/ycomb_jim.html) derives the applicative-order Y-combinator from scratch, in Scheme. This derivation is similar in flavor to the derivation found in The Little Schemer, but uses a slightly different starting approach... * [The church of the least fixed point, by Sans Pareil](http://www.springerlink.com/content/n4t2v573m58g2755/) ### Folds ### * [[!wikipedia Fold (higher-order function)]] ### Types ### * [[!wikipedia Typed lambda calculus]] * [[!wikipedia Simply typed lambda calculus]] * [Type Theory](http://plato.stanford.edu/entries/type-theory/) at the Stanford Encyclopedia of Philosophy * [Church's Type Theory](http://plato.stanford.edu/entries/type-theory-church/) at the Stanford Encyclopedia of Philosophy * [[!wikipedia Type polymorphism]] * [[!wikipedia System F]]