(* * monads.ml * * Relies on features introduced in OCaml 3.12 * * This library uses parameterized modules, see tree_monadize.ml for * more examples and explanation. * * Some comparisons with the Haskell monadic libraries, which we mostly follow: * In Haskell, the Reader 'a monadic type would be defined something like this: * newtype Reader a = Reader { runReader :: env -> a } * (For simplicity, I'm suppressing the fact that Reader is also parameterized * on the type of env.) * This creates a type wrapper around `env -> a`, so that Haskell will * distinguish between values that have been specifically designated as * being of type `Reader a`, and common-garden values of type `env -> a`. * To lift an aribtrary expression E of type `env -> a` into an `Reader a`, * you do this: * Reader { runReader = E } * or use any of the following equivalent shorthands: * Reader (E) * Reader $ E * To drop an expression R of type `Reader a` back into an `env -> a`, you do * one of these: * runReader (R) * runReader $ R * The `newtype` in the type declaration ensures that Haskell does this all * efficiently: though it regards E and R as type-distinct, their underlying * machine implementation is identical and doesn't need to be transformed when * lifting/dropping from one type to the other. * * Now, you _could_ also declare monads as record types in OCaml, too, _but_ * doing so would introduce an extra level of machine representation, and * lifting/dropping from the one type to the other wouldn't be free like it is * in Haskell. * * This library encapsulates the monadic types in another way: by * making their implementations private. The interpreter won't let * let you freely interchange the `'a Reader_monad.m`s defined below * with `Reader_monad.env -> 'a`. The code in this library can see that * those are equivalent, but code outside the library can't. Instead, you'll * have to use operations like `run` to convert the abstract monadic types * to types whose internals you have free access to. * * Acknowledgements: This is largely based on the mtl library distributed * with the Glasgow Haskell Compiler. I've also been helped in * various ways by posts and direct feedback from Oleg Kiselyov and * Chung-chieh Shan. The following were also useful: * - * - Ken Shan "Monads for natural language semantics" * - http://www.grabmueller.de/martin/www/pub/Transformers.pdf * - http://en.wikibooks.org/wiki/Haskell/Monad_transformers * * Licensing: MIT (if that's compatible with the ghc sources this is partly * derived from) *) exception Undefined (* Some library functions used below. *) module Util = struct let fold_right = List.fold_right let map = List.map let append = List.append let reverse = List.rev let concat = List.concat let concat_map f lst = List.concat (List.map f lst) (* let zip = List.combine *) let unzip = List.split let zip_with = List.map2 let replicate len fill = let rec loop n accu = if n == 0 then accu else loop (pred n) (fill :: accu) in loop len [] (* Dirty hack to be a default polymorphic zero. * To implement this cleanly, monads without a natural zero * should always wrap themselves in an option layer (see Tree_monad). *) let undef = Obj.magic (fun () -> raise Undefined) end (* * This module contains factories that extend a base set of * monadic definitions with a larger family of standard derived values. *) module Monad = struct (* * Signature extenders: * Make :: BASE -> S * MakeT :: BASET (with Wrapped : S) -> result sig not declared *) (* type of base definitions *) module type BASE = sig (* We make all monadic types doubly-parameterized so that they * can layer nicely with Continuation, which needs the second * type parameter. *) type ('x,'a) m type ('x,'a) result type ('x,'a) result_exn val unit : 'a -> ('x,'a) m val bind : ('x,'a) m -> ('a -> ('x,'b) m) -> ('x,'b) m val run : ('x,'a) m -> ('x,'a) result (* run_exn tries to provide a more ground-level result, but may fail *) val run_exn : ('x,'a) m -> ('x,'a) result_exn (* To simplify the library, we require every monad to supply a plus and zero. These obey the following laws: * zero >>= f === zero * plus zero u === u * plus u zero === u * Additionally, they will obey one of the following laws: * (Catch) plus (unit a) v === unit a * (Distrib) plus u v >>= f === plus (u >>= f) (v >>= f) * When no natural zero is available, use `let zero () = Util.undef`. * The Make functor automatically detects for zero >>= ..., and * plus zero _, plus _ zero; it also substitutes zero for pattern-match failures. *) val zero : unit -> ('x,'a) m (* zero has to be thunked to ensure results are always poly enough *) val plus : ('x,'a) m -> ('x,'a) m -> ('x,'a) m end module type S = sig include BASE val (>>=) : ('x,'a) m -> ('a -> ('x,'b) m) -> ('x,'b) m val (>>) : ('x,'a) m -> ('x,'b) m -> ('x,'b) m val join : ('x,('x,'a) m) m -> ('x,'a) m val apply : ('x,'a -> 'b) m -> ('x,'a) m -> ('x,'b) m val lift : ('a -> 'b) -> ('x,'a) m -> ('x,'b) m val lift2 : ('a -> 'b -> 'c) -> ('x,'a) m -> ('x,'b) m -> ('x,'c) m val (>=>) : ('a -> ('x,'b) m) -> ('b -> ('x,'c) m) -> 'a -> ('x,'c) m val do_when : bool -> ('x,unit) m -> ('x,unit) m val do_unless : bool -> ('x,unit) m -> ('x,unit) m val forever : (unit -> ('x,'a) m) -> ('x,'b) m val sequence : ('x,'a) m list -> ('x,'a list) m val sequence_ : ('x,'a) m list -> ('x,unit) m val guard : bool -> ('x,unit) m val sum : ('x,'a) m list -> ('x,'a) m end module Make(B : BASE) : S with type ('x,'a) m = ('x,'a) B.m and type ('x,'a) result = ('x,'a) B.result and type ('x,'a) result_exn = ('x,'a) B.result_exn = struct include B let bind (u : ('x,'a) m) (f : 'a -> ('x,'b) m) : ('x,'b) m = if u == Util.undef then Util.undef else B.bind u (fun a -> try f a with Match_failure _ -> zero ()) let plus u v = if u == Util.undef then v else if v == Util.undef then u else B.plus u v let run u = if u == Util.undef then raise Undefined else B.run u let run_exn u = if u == Util.undef then raise Undefined else B.run_exn u let (>>=) = bind (* expressions after >> will be evaluated before they're passed to * bind, so you can't do `zero () >> assert false` * this works though: `zero () >>= fun _ -> assert false` *) let (>>) u v = u >>= fun _ -> v let lift f u = u >>= fun a -> unit (f a) (* lift is called listM, fmap, and <$> in Haskell *) let join uu = uu >>= fun u -> u (* u >>= f === join (lift f u) *) let apply u v = u >>= fun f -> v >>= fun a -> unit (f a) (* [f] <*> [x1,x2] = [f x1,f x2] *) (* let apply u v = u >>= fun f -> lift f v *) (* let apply = lift2 id *) let lift2 f u v = u >>= fun a -> v >>= fun a' -> unit (f a a') (* let lift f u === apply (unit f) u *) (* let lift2 f u v = apply (lift f u) v *) let (>=>) f g = fun a -> f a >>= g let do_when test u = if test then u else unit () let do_unless test u = if test then unit () else u (* A Haskell-like version works: let rec forever uthunk = uthunk () >>= fun _ -> forever uthunk * but the recursive call is not in tail position so this can stack overflow. *) let forever uthunk = let z = zero () in let id result = result in let kcell = ref id in let rec loop _ = let result = uthunk (kcell := id) >>= chained in !kcell result and chained _ = kcell := loop; z (* we use z only for its polymorphism *) in loop z (* Reimplementations of the preceding using a hand-rolled State or StateT can also stack overflow. *) let sequence ms = let op u v = u >>= fun x -> v >>= fun xs -> unit (x :: xs) in Util.fold_right op ms (unit []) let sequence_ ms = Util.fold_right (>>) ms (unit ()) (* Haskell defines these other operations combining lists and monads. * We don't, but notice that M.mapM == ListT(M).distribute * There's also a parallel TreeT(M).distribute *) (* let mapM f alist = sequence (Util.map f alist) let mapM_ f alist = sequence_ (Util.map f alist) let rec filterM f lst = match lst with | [] -> unit [] | x::xs -> f x >>= fun flag -> filterM f xs >>= fun ys -> unit (if flag then x :: ys else ys) let forM alist f = mapM f alist let forM_ alist f = mapM_ f alist let map_and_unzipM f xs = sequence (Util.map f xs) >>= fun x -> unit (Util.unzip x) let zip_withM f xs ys = sequence (Util.zip_with f xs ys) let zip_withM_ f xs ys = sequence_ (Util.zip_with f xs ys) let rec foldM f z lst = match lst with | [] -> unit z | x::xs -> f z x >>= fun z' -> foldM f z' xs let foldM_ f z xs = foldM f z xs >> unit () let replicateM n x = sequence (Util.replicate n x) let replicateM_ n x = sequence_ (Util.replicate n x) *) let guard test = if test then B.unit () else zero () let sum ms = Util.fold_right plus ms (zero ()) end (* Signatures for MonadT *) module type BASET = sig module Wrapped : S type ('x,'a) m type ('x,'a) result type ('x,'a) result_exn val bind : ('x,'a) m -> ('a -> ('x,'b) m) -> ('x,'b) m val run : ('x,'a) m -> ('x,'a) result val run_exn : ('x,'a) m -> ('x,'a) result_exn val elevate : ('x,'a) Wrapped.m -> ('x,'a) m (* lift/elevate laws: * elevate (W.unit a) == unit a * elevate (W.bind w f) == elevate w >>= fun a -> elevate (f a) *) val zero : unit -> ('x,'a) m val plus : ('x,'a) m -> ('x,'a) m -> ('x,'a) m end module MakeT(T : BASET) = struct include Make(struct include T let unit a = elevate (Wrapped.unit a) end) let elevate = T.elevate end end module Identity_monad : sig (* expose only the implementation of type `'a result` *) type ('x,'a) result = 'a type ('x,'a) result_exn = 'a include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn end = struct module Base = struct type ('x,'a) m = 'a type ('x,'a) result = 'a type ('x,'a) result_exn = 'a let unit a = a let bind a f = f a let run a = a let run_exn a = a let zero () = Util.undef let plus u v = u end include Monad.Make(Base) end module Maybe_monad : sig (* expose only the implementation of type `'a result` *) type ('x,'a) result = 'a option type ('x,'a) result_exn = 'a include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn (* MaybeT transformer *) module T : functor (Wrapped : Monad.S) -> sig type ('x,'a) result = ('x,'a option) Wrapped.result type ('x,'a) result_exn = ('x,'a) Wrapped.result_exn include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn val elevate : ('x,'a) Wrapped.m -> ('x,'a) m end end = struct module Base = struct type ('x,'a) m = 'a option type ('x,'a) result = 'a option type ('x,'a) result_exn = 'a let unit a = Some a let bind u f = match u with Some a -> f a | None -> None let run u = u let run_exn u = match u with | Some a -> a | None -> failwith "no value" let zero () = None (* satisfies Catch *) let plus u v = match u with None -> v | _ -> u end include Monad.Make(Base) module T(Wrapped : Monad.S) = struct module BaseT = struct include Monad.MakeT(struct module Wrapped = Wrapped type ('x,'a) m = ('x,'a option) Wrapped.m type ('x,'a) result = ('x,'a option) Wrapped.result type ('x,'a) result_exn = ('x,'a) Wrapped.result_exn let elevate w = Wrapped.bind w (fun a -> Wrapped.unit (Some a)) let bind u f = Wrapped.bind u (fun t -> match t with | Some a -> f a | None -> Wrapped.unit None) let run u = Wrapped.run u let run_exn u = let w = Wrapped.bind u (fun t -> match t with | Some a -> Wrapped.unit a | None -> Wrapped.zero () ) in Wrapped.run_exn w let zero () = Wrapped.unit None let plus u v = Wrapped.bind u (fun t -> match t with | None -> v | _ -> u) end) end include BaseT end end module List_monad : sig (* declare additional operation, while still hiding implementation of type m *) type ('x,'a) result = 'a list type ('x,'a) result_exn = 'a include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn val permute : ('x,'a) m -> ('x,('x,'a) m) m val select : ('x,'a) m -> ('x,'a * ('x,'a) m) m (* ListT transformer *) module T : functor (Wrapped : Monad.S) -> sig type ('x,'a) result = ('x,'a list) Wrapped.result type ('x,'a) result_exn = ('x,'a) Wrapped.result_exn include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn val elevate : ('x,'a) Wrapped.m -> ('x,'a) m (* note that second argument is an 'a list, not the more abstract 'a m *) (* type is ('a -> 'b W) -> 'a list -> 'b list W == 'b listT(W) *) val distribute : ('a -> ('x,'b) Wrapped.m) -> 'a list -> ('x,'b) m (* TODO val permute : 'a m -> 'a m m val select : 'a m -> ('a * 'a m) m *) end end = struct module Base = struct type ('x,'a) m = 'a list type ('x,'a) result = 'a list type ('x,'a) result_exn = 'a let unit a = [a] let bind u f = Util.concat_map f u let run u = u let run_exn u = match u with | [] -> failwith "no values" | [a] -> a | many -> failwith "multiple values" let zero () = [] (* satisfies Distrib *) let plus = Util.append end include Monad.Make(Base) (* let either u v = plus u v *) (* insert 3 [1;2] ~~> [[3;1;2]; [1;3;2]; [1;2;3]] *) let rec insert a u = plus (unit (a :: u)) (match u with | [] -> zero () | x :: xs -> (insert a xs) >>= fun v -> unit (x :: v) ) (* permute [1;2;3] ~~> [1;2;3]; [2;1;3]; [2;3;1]; [1;3;2]; [3;1;2]; [3;2;1] *) let rec permute u = match u with | [] -> unit [] | x :: xs -> (permute xs) >>= (fun v -> insert x v) (* select [1;2;3] ~~> [(1,[2;3]); (2,[1;3]), (3;[1;2])] *) let rec select u = match u with | [] -> zero () | x::xs -> plus (unit (x, xs)) (select xs >>= fun (x', xs') -> unit (x', x :: xs')) module T(Wrapped : Monad.S) = struct (* Wrapped.sequence ms === let plus1 u v = Wrapped.bind u (fun x -> Wrapped.bind v (fun xs -> Wrapped.unit (x :: xs))) in Util.fold_right plus1 ms (Wrapped.unit []) *) (* distribute === Wrapped.mapM; copies alist to its image under f *) let distribute f alist = Wrapped.sequence (Util.map f alist) include Monad.MakeT(struct module Wrapped = Wrapped type ('x,'a) m = ('x,'a list) Wrapped.m type ('x,'a) result = ('x,'a list) Wrapped.result type ('x,'a) result_exn = ('x,'a) Wrapped.result_exn let elevate w = Wrapped.bind w (fun a -> Wrapped.unit [a]) let bind u f = Wrapped.bind u (fun ts -> Wrapped.bind (distribute f ts) (fun tts -> Wrapped.unit (Util.concat tts))) let run u = Wrapped.run u let run_exn u = let w = Wrapped.bind u (fun ts -> match ts with | [] -> Wrapped.zero () | [a] -> Wrapped.unit a | many -> Wrapped.zero () ) in Wrapped.run_exn w let zero () = Wrapped.unit [] let plus u v = Wrapped.bind u (fun us -> Wrapped.bind v (fun vs -> Wrapped.unit (Base.plus us vs))) end) (* let permute : 'a m -> 'a m m let select : 'a m -> ('a * 'a m) m *) end end (* must be parameterized on (struct type err = ... end) *) module Error_monad(Err : sig type err exception Exc of err (* val zero : unit -> err val plus : err -> err -> err *) end) : sig (* declare additional operations, while still hiding implementation of type m *) type err = Err.err type 'a error = Error of err | Success of 'a type ('x,'a) result = 'a error type ('x,'a) result_exn = 'a include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn val throw : err -> ('x,'a) m val catch : ('x,'a) m -> (err -> ('x,'a) m) -> ('x,'a) m (* ErrorT transformer *) module T : functor (Wrapped : Monad.S) -> sig type ('x,'a) result = ('x,'a) Wrapped.result type ('x,'a) result_exn = ('x,'a) Wrapped.result_exn include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn val elevate : ('x,'a) Wrapped.m -> ('x,'a) m val throw : err -> ('x,'a) m val catch : ('x,'a) m -> (err -> ('x,'a) m) -> ('x,'a) m end end = struct type err = Err.err type 'a error = Error of err | Success of 'a module Base = struct type ('x,'a) m = 'a error type ('x,'a) result = 'a error type ('x,'a) result_exn = 'a let unit a = Success a let bind u f = match u with | Success a -> f a | Error e -> Error e (* input and output may be of different 'a types *) let run u = u let run_exn u = match u with | Success a -> a | Error e -> raise (Err.Exc e) let zero () = Util.undef (* satisfies Catch *) let plus u v = match u with | Success _ -> u | Error _ -> if v == Util.undef then u else v end include Monad.Make(Base) (* include (Monad.MakeCatch(Base) : Monad.PLUS with type 'a m := 'a m) *) let throw e = Error e let catch u handler = match u with | Success _ -> u | Error e -> handler e module T(Wrapped : Monad.S) = struct include Monad.MakeT(struct module Wrapped = Wrapped type ('x,'a) m = ('x,'a error) Wrapped.m type ('x,'a) result = ('x,'a) Wrapped.result type ('x,'a) result_exn = ('x,'a) Wrapped.result_exn let elevate w = Wrapped.bind w (fun a -> Wrapped.unit (Success a)) let bind u f = Wrapped.bind u (fun t -> match t with | Success a -> f a | Error e -> Wrapped.unit (Error e)) let run u = let w = Wrapped.bind u (fun t -> match t with | Success a -> Wrapped.unit a | Error e -> Wrapped.zero () ) in Wrapped.run w let run_exn u = let w = Wrapped.bind u (fun t -> match t with | Success a -> Wrapped.unit a | Error e -> raise (Err.Exc e)) in Wrapped.run_exn w let plus u v = Wrapped.plus u v let zero () = Wrapped.zero () (* elevate (Wrapped.zero ()) *) end) let throw e = Wrapped.unit (Error e) let catch u handler = Wrapped.bind u (fun t -> match t with | Success _ -> Wrapped.unit t | Error e -> handler e) end end (* pre-define common instance of Error_monad *) module Failure = Error_monad(struct type err = string exception Exc = Failure (* let zero = "" let plus s1 s2 = s1 ^ "\n" ^ s2 *) end) (* must be parameterized on (struct type env = ... end) *) module Reader_monad(Env : sig type env end) : sig (* declare additional operations, while still hiding implementation of type m *) type env = Env.env type ('x,'a) result = env -> 'a type ('x,'a) result_exn = env -> 'a include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn val ask : ('x,env) m val asks : (env -> 'a) -> ('x,'a) m (* lookup i == `fun e -> e i` would assume env is a functional type *) val local : (env -> env) -> ('x,'a) m -> ('x,'a) m (* ReaderT transformer *) module T : functor (Wrapped : Monad.S) -> sig type ('x,'a) result = env -> ('x,'a) Wrapped.result type ('x,'a) result_exn = env -> ('x,'a) Wrapped.result_exn include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn val elevate : ('x,'a) Wrapped.m -> ('x,'a) m val ask : ('x,env) m val asks : (env -> 'a) -> ('x,'a) m val local : (env -> env) -> ('x,'a) m -> ('x,'a) m end end = struct type env = Env.env module Base = struct type ('x,'a) m = env -> 'a type ('x,'a) result = env -> 'a type ('x,'a) result_exn = env -> 'a let unit a = fun e -> a let bind u f = fun e -> let a = u e in let u' = f a in u' e let run u = fun e -> u e let run_exn = run let zero () = Util.undef let plus u v = u end include Monad.Make(Base) let ask = fun e -> e let asks selector = ask >>= (fun e -> unit (selector e)) (* may fail *) let local modifier u = fun e -> u (modifier e) module T(Wrapped : Monad.S) = struct module BaseT = struct module Wrapped = Wrapped type ('x,'a) m = env -> ('x,'a) Wrapped.m type ('x,'a) result = env -> ('x,'a) Wrapped.result type ('x,'a) result_exn = env -> ('x,'a) Wrapped.result_exn let elevate w = fun e -> w let bind u f = fun e -> Wrapped.bind (u e) (fun a -> f a e) let run u = fun e -> Wrapped.run (u e) let run_exn u = fun e -> Wrapped.run_exn (u e) (* satisfies Distrib *) let plus u v = fun e -> Wrapped.plus (u e) (v e) let zero () = fun e -> Wrapped.zero () (* elevate (Wrapped.zero ()) *) end include Monad.MakeT(BaseT) let ask = Wrapped.unit let local modifier u = fun e -> u (modifier e) let asks selector = ask >>= (fun e -> try unit (selector e) with Not_found -> fun e -> Wrapped.zero ()) end end (* must be parameterized on (struct type store = ... end) *) module State_monad(Store : sig type store end) : sig (* declare additional operations, while still hiding implementation of type m *) type store = Store.store type ('x,'a) result = store -> 'a * store type ('x,'a) result_exn = store -> 'a include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn val get : ('x,store) m val gets : (store -> 'a) -> ('x,'a) m val put : store -> ('x,unit) m val puts : (store -> store) -> ('x,unit) m (* StateT transformer *) module T : functor (Wrapped : Monad.S) -> sig type ('x,'a) result = store -> ('x,'a * store) Wrapped.result type ('x,'a) result_exn = store -> ('x,'a) Wrapped.result_exn include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn val elevate : ('x,'a) Wrapped.m -> ('x,'a) m val get : ('x,store) m val gets : (store -> 'a) -> ('x,'a) m val put : store -> ('x,unit) m val puts : (store -> store) -> ('x,unit) m end end = struct type store = Store.store module Base = struct type ('x,'a) m = store -> 'a * store type ('x,'a) result = store -> 'a * store type ('x,'a) result_exn = store -> 'a let unit a = fun s -> (a, s) let bind u f = fun s -> let (a, s') = u s in let u' = f a in u' s' let run u = fun s -> (u s) let run_exn u = fun s -> fst (u s) let zero () = Util.undef let plus u v = u end include Monad.Make(Base) let get = fun s -> (s, s) let gets viewer = fun s -> (viewer s, s) (* may fail *) let put s = fun _ -> ((), s) let puts modifier = fun s -> ((), modifier s) module T(Wrapped : Monad.S) = struct module BaseT = struct module Wrapped = Wrapped type ('x,'a) m = store -> ('x,'a * store) Wrapped.m type ('x,'a) result = store -> ('x,'a * store) Wrapped.result type ('x,'a) result_exn = store -> ('x,'a) Wrapped.result_exn let elevate w = fun s -> Wrapped.bind w (fun a -> Wrapped.unit (a, s)) let bind u f = fun s -> Wrapped.bind (u s) (fun (a, s') -> f a s') let run u = fun s -> Wrapped.run (u s) let run_exn u = fun s -> let w = Wrapped.bind (u s) (fun (a,s) -> Wrapped.unit a) in Wrapped.run_exn w (* satisfies Distrib *) let plus u v = fun s -> Wrapped.plus (u s) (v s) let zero () = fun s -> Wrapped.zero () (* elevate (Wrapped.zero ()) *) end include Monad.MakeT(BaseT) let get = fun s -> Wrapped.unit (s, s) let gets viewer = fun s -> try Wrapped.unit (viewer s, s) with Not_found -> Wrapped.zero () let put s = fun _ -> Wrapped.unit ((), s) let puts modifier = fun s -> Wrapped.unit ((), modifier s) end end (* State monad with different interface (structured store) *) module Ref_monad(V : sig type value end) : sig type ref type value = V.value type ('x,'a) result = 'a type ('x,'a) result_exn = 'a include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn val newref : value -> ('x,ref) m val deref : ref -> ('x,value) m val change : ref -> value -> ('x,unit) m (* RefT transformer *) module T : functor (Wrapped : Monad.S) -> sig type ('x,'a) result = ('x,'a) Wrapped.result type ('x,'a) result_exn = ('x,'a) Wrapped.result_exn include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn val elevate : ('x,'a) Wrapped.m -> ('x,'a) m val newref : value -> ('x,ref) m val deref : ref -> ('x,value) m val change : ref -> value -> ('x,unit) m end end = struct type ref = int type value = V.value module D = Map.Make(struct type t = ref let compare = compare end) type dict = { next: ref; tree : value D.t } let empty = { next = 0; tree = D.empty } let alloc (value : value) (d : dict) = (d.next, { next = succ d.next; tree = D.add d.next value d.tree }) let read (key : ref) (d : dict) = D.find key d.tree let write (key : ref) (value : value) (d : dict) = { next = d.next; tree = D.add key value d.tree } module Base = struct type ('x,'a) m = dict -> 'a * dict type ('x,'a) result = 'a type ('x,'a) result_exn = 'a let unit a = fun s -> (a, s) let bind u f = fun s -> let (a, s') = u s in let u' = f a in u' s' let run u = fst (u empty) let run_exn = run let zero () = Util.undef let plus u v = u end include Monad.Make(Base) let newref value = fun s -> alloc value s let deref key = fun s -> (read key s, s) (* shouldn't fail because key will have an abstract type, and we never garbage collect *) let change key value = fun s -> ((), write key value s) (* shouldn't allocate because key will have an abstract type *) module T(Wrapped : Monad.S) = struct module BaseT = struct module Wrapped = Wrapped type ('x,'a) m = dict -> ('x,'a * dict) Wrapped.m type ('x,'a) result = ('x,'a) Wrapped.result type ('x,'a) result_exn = ('x,'a) Wrapped.result_exn let elevate w = fun s -> Wrapped.bind w (fun a -> Wrapped.unit (a, s)) let bind u f = fun s -> Wrapped.bind (u s) (fun (a, s') -> f a s') let run u = let w = Wrapped.bind (u empty) (fun (a,s) -> Wrapped.unit a) in Wrapped.run w let run_exn u = let w = Wrapped.bind (u empty) (fun (a,s) -> Wrapped.unit a) in Wrapped.run_exn w (* satisfies Distrib *) let plus u v = fun s -> Wrapped.plus (u s) (v s) let zero () = fun s -> Wrapped.zero () (* elevate (Wrapped.zero ()) *) end include Monad.MakeT(BaseT) let newref value = fun s -> Wrapped.unit (alloc value s) let deref key = fun s -> Wrapped.unit (read key s, s) let change key value = fun s -> Wrapped.unit ((), write key value s) end end (* must be parameterized on (struct type log = ... end) *) module Writer_monad(Log : sig type log val zero : log val plus : log -> log -> log end) : sig (* declare additional operations, while still hiding implementation of type m *) type log = Log.log type ('x,'a) result = 'a * log type ('x,'a) result_exn = 'a * log include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn val tell : log -> ('x,unit) m val listen : ('x,'a) m -> ('x,'a * log) m val listens : (log -> 'b) -> ('x,'a) m -> ('x,'a * 'b) m (* val pass : ('x,'a * (log -> log)) m -> ('x,'a) m *) val censor : (log -> log) -> ('x,'a) m -> ('x,'a) m (* WriterT transformer *) module T : functor (Wrapped : Monad.S) -> sig type ('x,'a) result = ('x,'a * log) Wrapped.result type ('x,'a) result_exn = ('x,'a * log) Wrapped.result_exn include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn val elevate : ('x,'a) Wrapped.m -> ('x,'a) m val tell : log -> ('x,unit) m val listen : ('x,'a) m -> ('x,'a * log) m val listens : (log -> 'b) -> ('x,'a) m -> ('x,'a * 'b) m val censor : (log -> log) -> ('x,'a) m -> ('x,'a) m end end = struct type log = Log.log module Base = struct type ('x,'a) m = 'a * log type ('x,'a) result = 'a * log type ('x,'a) result_exn = 'a * log let unit a = (a, Log.zero) let bind (a, w) f = let (b, w') = f a in (b, Log.plus w w') let run u = u let run_exn = run let zero () = Util.undef let plus u v = u end include Monad.Make(Base) let tell entries = ((), entries) (* add entries to log *) let listen (a, w) = ((a, w), w) let listens selector u = listen u >>= fun (a, w) -> unit (a, selector w) (* filter listen through selector *) let pass ((a, f), w) = (a, f w) (* usually use censor helper *) let censor f u = pass (u >>= fun a -> unit (a, f)) module T(Wrapped : Monad.S) = struct module BaseT = struct module Wrapped = Wrapped type ('x,'a) m = ('x,'a * log) Wrapped.m type ('x,'a) result = ('x,'a * log) Wrapped.result type ('x,'a) result_exn = ('x,'a * log) Wrapped.result_exn let elevate w = Wrapped.bind w (fun a -> Wrapped.unit (a, Log.zero)) let bind u f = Wrapped.bind u (fun (a, w) -> Wrapped.bind (f a) (fun (b, w') -> Wrapped.unit (b, Log.plus w w'))) let zero () = elevate (Wrapped.zero ()) let plus u v = Wrapped.plus u v let run u = Wrapped.run u let run_exn u = Wrapped.run_exn u end include Monad.MakeT(BaseT) let tell entries = Wrapped.unit ((), entries) let listen u = Wrapped.bind u (fun (a, w) -> Wrapped.unit ((a, w), w)) let pass u = Wrapped.bind u (fun ((a, f), w) -> Wrapped.unit (a, f w)) (* rest are derived in same way as before *) let listens selector u = listen u >>= fun (a, w) -> unit (a, selector w) let censor f u = pass (u >>= fun a -> unit (a, f)) end end (* pre-define simple Writer *) module Writer1 = Writer_monad(struct type log = string let zero = "" let plus s1 s2 = s1 ^ "\n" ^ s2 end) (* slightly more efficient Writer *) module Writer2 = struct include Writer_monad(struct type log = string list let zero = [] let plus w w' = Util.append w' w end) let tell_string s = tell [s] let tell entries = tell (Util.reverse entries) let run u = let (a, w) = run u in (a, Util.reverse w) let run_exn = run end (* TODO needs a T *) module IO_monad : sig (* declare additional operation, while still hiding implementation of type m *) type ('x,'a) result = 'a type ('x,'a) result_exn = 'a include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn val printf : ('a, unit, string, ('x,unit) m) format4 -> 'a val print_string : string -> ('x,unit) m val print_int : int -> ('x,unit) m val print_hex : int -> ('x,unit) m val print_bool : bool -> ('x,unit) m end = struct module Base = struct type ('x,'a) m = { run : unit -> unit; value : 'a } type ('x,'a) result = 'a type ('x,'a) result_exn = 'a let unit a = { run = (fun () -> ()); value = a } let bind (a : ('x,'a) m) (f: 'a -> ('x,'b) m) : ('x,'b) m = let fres = f a.value in { run = (fun () -> a.run (); fres.run ()); value = fres.value } let run a = let () = a.run () in a.value let run_exn = run let zero () = Util.undef let plus u v = u end include Monad.Make(Base) let printf fmt = Printf.ksprintf (fun s -> { Base.run = (fun () -> Pervasives.print_string s); value = () }) fmt let print_string s = { Base.run = (fun () -> Printf.printf "%s\n" s); value = () } let print_int i = { Base.run = (fun () -> Printf.printf "%d\n" i); value = () } let print_hex i = { Base.run = (fun () -> Printf.printf "0x%x\n" i); value = () } let print_bool b = { Base.run = (fun () -> Printf.printf "%B\n" b); value = () } end module Continuation_monad : sig (* expose only the implementation of type `('r,'a) result` *) type ('r,'a) m type ('r,'a) result = ('r,'a) m type ('r,'a) result_exn = ('a -> 'r) -> 'r include Monad.S with type ('r,'a) result := ('r,'a) result and type ('r,'a) result_exn := ('r,'a) result_exn and type ('r,'a) m := ('r,'a) m val callcc : (('a -> ('r,'b) m) -> ('r,'a) m) -> ('r,'a) m val reset : ('a,'a) m -> ('r,'a) m val shift : (('a -> ('q,'r) m) -> ('r,'r) m) -> ('r,'a) m (* val abort : ('a,'a) m -> ('a,'b) m *) val abort : 'a -> ('a,'b) m val run0 : ('a,'a) m -> 'a (* ContinuationT transformer *) module T : functor (Wrapped : Monad.S) -> sig type ('r,'a) m type ('r,'a) result = ('a -> ('r,'r) Wrapped.m) -> ('r,'r) Wrapped.result type ('r,'a) result_exn = ('a -> ('r,'r) Wrapped.m) -> ('r,'r) Wrapped.result_exn include Monad.S with type ('r,'a) result := ('r,'a) result and type ('r,'a) result_exn := ('r,'a) result_exn and type ('r,'a) m := ('r,'a) m val elevate : ('x,'a) Wrapped.m -> ('x,'a) m val callcc : (('a -> ('r,'b) m) -> ('r,'a) m) -> ('r,'a) m (* TODO: reset,shift,abort,run0 *) end end = struct let id = fun i -> i module Base = struct (* 'r is result type of whole computation *) type ('r,'a) m = ('a -> 'r) -> 'r type ('r,'a) result = ('a -> 'r) -> 'r type ('r,'a) result_exn = ('r,'a) result let unit a = (fun k -> k a) let bind u f = (fun k -> (u) (fun a -> (f a) k)) let run u k = (u) k let run_exn = run let zero () = Util.undef let plus u v = u end include Monad.Make(Base) let callcc f = (fun k -> let usek a = (fun _ -> k a) in (f usek) k) (* val callcc : (('a -> 'r) -> ('r,'a) m) -> ('r,'a) m val throw : ('a -> 'r) -> 'a -> ('r,'b) m let callcc f = fun k -> f k k let throw k a = fun _ -> k a *) (* from http://www.haskell.org/haskellwiki/MonadCont_done_right * * reset :: (Monad m) => ContT a m a -> ContT r m a * reset e = ContT $ \k -> runContT e return >>= k * * shift :: (Monad m) => ((a -> ContT r m b) -> ContT b m b) -> ContT b m a * shift e = ContT $ \k -> * runContT (e $ \v -> ContT $ \c -> k v >>= c) return *) let reset u = unit ((u) id) let shift f = (fun k -> (f (fun a -> unit (k a))) id) (* let abort a = shift (fun _ -> a) *) let abort a = shift (fun _ -> unit a) let run0 (u : ('a,'a) m) = (u) id module T(Wrapped : Monad.S) = struct module BaseT = struct module Wrapped = Wrapped type ('r,'a) m = ('a -> ('r,'r) Wrapped.m) -> ('r,'r) Wrapped.m type ('r,'a) result = ('a -> ('r,'r) Wrapped.m) -> ('r,'r) Wrapped.result type ('r,'a) result_exn = ('a -> ('r,'r) Wrapped.m) -> ('r,'r) Wrapped.result_exn let elevate w = fun k -> Wrapped.bind w k let bind u f = fun k -> u (fun a -> f a k) let run u k = Wrapped.run (u k) let run_exn u k = Wrapped.run_exn (u k) let zero () = Util.undef let plus u v = u end include Monad.MakeT(BaseT) let callcc f = (fun k -> let usek a = (fun _ -> k a) in (f usek) k) end end (* * Scheme: * (define (example n) * (let ([u (let/cc k ; type int -> int pair * (let ([v (if (< n 0) (k 0) (list (+ n 100)))]) * (+ 1 (car v))))]) ; int * (cons u 0))) ; int pair * ; (example 10) ~~> '(111 . 0) * ; (example -10) ~~> '(0 . 0) * * OCaml monads: * let example n : (int * int) = * Continuation_monad.(let u = callcc (fun k -> * (if n < 0 then k 0 else unit [n + 100]) * (* all of the following is skipped by k 0; the end type int is k's input type *) * >>= fun [x] -> unit (x + 1) * ) * (* k 0 starts again here, outside the callcc (...); the end type int * int is k's output type *) * >>= fun x -> unit (x, 0) * in run u) * *) module Tree_monad : sig (* We implement the type as `'a tree option` because it has a natural`plus`, * and the rest of the library expects that `plus` and `zero` will come together. *) type 'a tree = Leaf of 'a | Node of ('a tree * 'a tree) type ('x,'a) result = 'a tree option type ('x,'a) result_exn = 'a tree include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn (* TreeT transformer *) module T : functor (Wrapped : Monad.S) -> sig type ('x,'a) result = ('x,'a tree option) Wrapped.result type ('x,'a) result_exn = ('x,'a tree) Wrapped.result_exn include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn val elevate : ('x,'a) Wrapped.m -> ('x,'a) m (* note that second argument is an 'a tree?, not the more abstract 'a m *) (* type is ('a -> 'b W) -> 'a tree? -> 'b tree? W == 'b treeT(W) *) val distribute : ('a -> ('x,'b) Wrapped.m) -> 'a tree option -> ('x,'b) m end end = struct type 'a tree = Leaf of 'a | Node of ('a tree * 'a tree) (* uses supplied plus and zero to copy t to its image under f *) let mapT (f : 'a -> 'b) (t : 'a tree option) (zero : unit -> 'b) (plus : 'b -> 'b -> 'b) : 'b = match t with | None -> zero () | Some ts -> let rec loop ts = (match ts with | Leaf a -> f a | Node (l, r) -> (* recursive application of f may delete a branch *) plus (loop l) (loop r) ) in loop ts module Base = struct type ('x,'a) m = 'a tree option type ('x,'a) result = 'a tree option type ('x,'a) result_exn = 'a tree let unit a = Some (Leaf a) let zero () = None (* satisfies Distrib *) let plus u v = match (u, v) with | None, _ -> v | _, None -> u | Some us, Some vs -> Some (Node (us, vs)) let bind u f = mapT f u zero plus let run u = u let run_exn u = match u with | None -> failwith "no values" (* | Some (Leaf a) -> a | many -> failwith "multiple values" *) | Some us -> us end include Monad.Make(Base) module T(Wrapped : Monad.S) = struct module BaseT = struct include Monad.MakeT(struct module Wrapped = Wrapped type ('x,'a) m = ('x,'a tree option) Wrapped.m type ('x,'a) result = ('x,'a tree option) Wrapped.result type ('x,'a) result_exn = ('x,'a tree) Wrapped.result_exn let zero () = Wrapped.unit None let plus u v = Wrapped.bind u (fun us -> Wrapped.bind v (fun vs -> Wrapped.unit (Base.plus us vs))) let elevate w = Wrapped.bind w (fun a -> Wrapped.unit (Some (Leaf a))) let bind u f = Wrapped.bind u (fun t -> mapT f t zero plus) let run u = Wrapped.run u let run_exn u = let w = Wrapped.bind u (fun t -> match t with | None -> Wrapped.zero () | Some ts -> Wrapped.unit ts ) in Wrapped.run_exn w end) end include BaseT let distribute f t = mapT (fun a -> elevate (f a)) t zero plus end end;;