212a6d0511f35e444a9cc76e39d314d069c9f8a5
1 ## Recursion ##
3 ## Basic fixed points ##
5 1. Recall that <code>&omega; := \f.ff</code>, and <code>&Omega; :=
6 &omega; &omega;</code>.  Is <code>&Omega;</code> a fixed point for
7 <code>&omega;</code>?  Find a fixed point for <code>&omega;</code>,
8 and prove that it is a fixed point.
10 2. Consider <code>&Omega; X</code> for an arbitrary term `X`.
11 &Omega; is so busy reducing itself (the eternal solipsist) that it
12 never gets around to noticing whether it has an argument, let alone
13 doing anything with that argument.  If so, how could &Omega; have a
14 fixed point?  That is, how could there be an `X` such that
15 <code>&Omega; X <~~> &Omega;(&Omega; X)</code>?  To answer this
16 question, begin by constructing <code>Y&Omega;</code>.  Prove that
17 <code>Y&Omega;</code> is a fixed point for &Omega;.
19 3. Find two different terms that have the same fixed point.  That is,
20 find terms `F`, `G`, and `X` such that `F(X) <~~> F(F(X))` and `G(X)
21 <~~> G(G(X))`.  (If you need a hint, reread the notes on fixed
22 points.)
24 ## Writing recursive functions ##
26 4. Helping yourself to the functions given just below,
27 write a recursive function caled `fac` that computes the factorial.
28 The factorial `n! = n * (n - 1) * (n - 2) * ... * 3 * 2 * 1`.
29 For instance, `fac 0 ~~> 1`, `fac 1 ~~> 1`, `fac 2 ~~> 2`, `fac 3 ~~>
30 6`, and `fac 4 ~~> 24`.
32      let true = \then else. then in
33      let false = \then else. else in
34      let iszero = \n. n (\x. false) true in
35      let pred = \n f z. n (\u v. v (u f)) (K z) I in
36      let succ = \n f z. f (n f z) in
37      let add = \n m .n succ m in
38      let mult = \n m.n(add m)0 in
39      let Y = \h . (\f . h (f f)) (\f . h (f f)) in
41      let fac = ... in
43      fac 4
45 ## Arithmetic infinity? ##
47 The next few questions involve reasoning about Church arithmetic and
48 infinity.  Let's choose some arithmetic functions:
50     succ = \nfz.f(nfz)
51     add = \m n. m succ n in
52     mult = \m n. m (add n) 0 in
53     exp = \m n . m (mult n) 1 in
55 There is a pleasing pattern here: addition is defined in terms of
56 the successor function, multiplication is defined in terms of
57 addition, and exponentiation is defined in terms of multiplication.
59 1. Find a fixed point `X` for the succ function.  Prove it's a fixed
60 point, i.e., demonstrate that `succ X <~~> succ (succ X)`.
62 We've had surprising success embedding normal arithmetic in the lambda
63 calculus, modeling the natural numbers, addition, multiplication, and
64 so on.  But one thing that some versions of arithmetic supply is a
65 notion of infinity, which we'll write as `inf`.  This object usually
66 satisfies the following constraints, for any (finite) natural number `n`:
68     n + inf == inf
69     n * inf == inf
70     n ^ inf == inf
71     n leq inf == True
73 2. Prove that `add 1 X <~~> X`, where `X` is the fixed
74 point you found in (1).  What about `add 2 X <~~> X`?
76 Comment: a fixed point for the succ function is an object such that it
77 is unchanged after adding 1 to it.  It make a certain amount of sense
78 to use this object to model arithmetic infinity.  For instance,
79 depending on implementation details, it might happen that `leq n X` is
80 true for all (finite) natural numbers `n`.  However, the fixed point
81 you found for succ is unlikely to be a fixed point for `mult n` or for
82 `exp n`.
85 #Mutually-recursive functions#
87 <OL start=5>
88 <LI>(Challenging.) One way to define the function `even` is to have it hand off
89 part of the work to another function `odd`:
91         let even = \x. iszero x
92                                         ; if x == 0 then result is
93                                         true
94                                         ; else result turns on whether x's pred is odd
95                                         (odd (pred x))
97 At the same tme, though, it's natural to define `odd` in such a way that it
98 hands off part of the work to `even`:
100         let odd = \x. iszero x
101                                         ; if x == 0 then result is
102                                         false
103                                         ; else result turns on whether x's pred is even
104                                         (even (pred x))
106 Such a definition of `even` and `odd` is called **mutually recursive**. If you
107 trace through the evaluation of some sample numerical arguments, you can see
108 that eventually we'll always reach a base step. So the recursion should be
109 perfectly well-grounded:
111         even 3
112         ~~> iszero 3 true (odd (pred 3))
113         ~~> odd 2
114         ~~> iszero 2 false (even (pred 2))
115         ~~> even 1
116         ~~> iszero 1 true (odd (pred 1))
117         ~~> odd 0
118         ~~> iszero 0 false (even (pred 0))
119         ~~> false
121 But we don't yet know how to implement this kind of recursion in the lambda
122 calculus.
124 The fixed point operators we've been working with so far worked like this:
126         let X = Y T in
127         X <~~> T X
129 Suppose we had a pair of fixed point operators, `Y1` and `Y2`, that operated on
130 a *pair* of functions `T1` and `T2`, as follows:
132         let X1 = Y1 T1 T2 in
133         let X2 = Y2 T1 T2 in
134         X1 <~~> T1 X1 X2 and
135         X2 <~~> T2 X1 X2
137 If we gave you such a `Y1` and `Y2`, how would you implement the above
138 definitions of `even` and `odd`?
141 <LI>(More challenging.) Using our derivation of Y from the [Week3
142 notes](/week3/#index4h2) as a model, construct a pair `Y1` and `Y2` that behave
143 in the way described.
145 (See [[hints/Assignment 4 hint 3]] if you need some hints.)