X-Git-Url: http://lambda.jimpryor.net/git/gitweb.cgi?a=blobdiff_plain;f=curry-howard.mdwn;h=183b54ebb463fb1cae33283053dc6703c15860dc;hb=HEAD;hp=f3c1be7590eb348711cee3bd4d25e993f1272749;hpb=ac6c32595e75ae0d3aa0631be7df6ca758626d56;p=lambda.git diff --git a/curry-howard.mdwn b/curry-howard.mdwn deleted file mode 100644 index f3c1be75..00000000 --- a/curry-howard.mdwn +++ /dev/null @@ -1,166 +0,0 @@ -Curry-Howard, take 1 --------------------- - -We will return to the Curry-Howard correspondence a number of times -during this course. It expresses a deep connection between logic, -types, and computation. Today we'll discuss how the simply-typed -lambda calculus corresponds to intuitionistic logic. This naturally -give rise to the question of what sort of computation classical logic -corresponds to---as we'll see later, the answer involves continuations. - -So at this point we have the simply-typed lambda calculus: a set of -ground types, a set of functional types, and some typing rules, given -roughly as follows: - -If a variable `x` has type σ and term `M` has type τ, then -the abstract `\xM` has type σ `-->` τ. - -If a term `M` has type σ `-->` τ, and a term `N` has type -σ, then the application `MN` has type τ. - -These rules are clearly obverses of one another: the functional types -that abstract builds up are taken apart by application. - -The next step in making sense out of the Curry-Howard corresponence is -to present a logic. It will be a part of intuitionistic logic. We'll -start with the implicational fragment (that is, the part of -intuitionistic logic that only involves axioms and implications): - -
-Axiom: ---------
-        A |- A
-
-Structural Rules:
-
-          Γ, A, B, Δ |- C
-Exchange: ---------------------------
-          Γ, B, A, Δ |- C
-
-             Γ, A, A |- B
-Contraction: -------------------
-             Γ, A |- B
-
-           Γ |- B
-Weakening: -----------------
-           Γ, A |- B 
-
-Logical Rules:
-
-         Γ, A |- B
---> I:   -------------------
-         Γ |- A --> B  
-
-         Γ |- A --> B         Γ |- A
---> E:   -----------------------------------
-         Γ |- B
-
- -`A`, `B`, etc. are variables over formulas. -Γ, Δ, etc. are variables over (possibly empty) sequences -of formulas. Γ `|- A` is a sequent, and is interpreted as -claiming that if each of the formulas in Γ is true, then `A` -must also be true. - -This logic allows derivations of theorems like the following: - -
--------  Id
-A |- A
----------- Weak
-A, B |- A
-------------- --> I
-A |- B --> A
------------------ --> I
-|- A --> B --> A
-
- -Should remind you of simple types. (What was `A --> B --> A` the type -of again?) - -The easy way to grasp the Curry-Howard correspondence is to *label* -the proofs. Since we wish to establish a correspondence between this -logic and the lambda calculus, the labels will all be terms from the -simply-typed lambda calculus. Here are the labeling rules: - -
-Axiom: -----------
-       x:A |- x:A
-
-Structural Rules:
-
-          Γ, x:A, y:B, Δ |- R:C
-Exchange: -------------------------------
-          Γ, y:B, x:A, Δ |- R:C
-
-             Γ, x:A, x:A |- R:B
-Contraction: --------------------------
-             Γ, x:A |- R:B
-
-           Γ |- R:B
-Weakening: --------------------- 
-           Γ, x:A |- R:B     [x chosen fresh]
-
-Logical Rules:
-
-         Γ, x:A |- R:B
---> I:   -------------------------
-         Γ |- \xM:A --> B  
-
-         Γ |- f:(A --> B)      Γ |- x:A
---> E:   -------------------------------------
-         Γ |- (fx):B
-
- -In these labeling rules, if a sequence Γ in a premise contains -labeled formulas, those labels remain unchanged in the conclusion. - -What is means for a variable `x` to be chosen *fresh* is that -`x` must be distinct from any other variable in any of the labels -used in the proof. - -Using these labeling rules, we can label the proof -just given: - -
-------------  Id
-x:A |- x:A
----------------- Weak
-x:A, y:B |- x:A
-------------------------- --> I
-x:A |- (\y.x):(B --> A)
----------------------------- --> I
-|- (\x y. x):A --> B --> A
-
- -We have derived the *K* combinator, and typed it at the same time! - -Need a proof that involves application, and a proof with cut that will -show beta reduction, so "normal" proof. - -[To do: add pairs and destructors; unit and negation...] - -Excercise: construct a proof whose labeling is the combinator S, -something like this: - - --------- Ax --------- Ax ------- Ax - !a --> !a !b --> !b c --> c - ----------------------- L-> -------- L! - !a,!a->!b --> !b !c --> c ---------- Ax ---------------------------------- L-> -!a --> !a !a,!b->!c,!a->!b --> c ------------------------------------------- L-> - !a,!a,!a->!b->!c,!a->!b --> c - ----------------------------- C! - !a,!a->!b->!c,!a->!b --> c - ------------------------------ L! - !a,!a->!b->!c,! (!a->!b) --> c - ---------------------------------- L! - !a,! (!a->!b->!c),! (!a->!b) --> c - ----------------------------------- R! - !a,! (!a->!b->!c),! (!a->!b) --> !c - ------------------------------------ R-> - ! (!a->!b->!c),! (!a->!b) --> !a->!c - ------------------------------------- R-> - ! (!a->!b) --> ! (!a->!b->!c)->!a->!c - --------------------------------------- R-> - --> ! (!a->!b)->! (!a->!b->!c)->!a->!c