X-Git-Url: http://lambda.jimpryor.net/git/gitweb.cgi?a=blobdiff_plain;ds=sidebyside;f=assignment5.mdwn;h=2078c1c094b59441c69a357729ee8fc505ca3fe0;hb=c45c91f3f0a5e1e1a4098d8fb610d55ea0611977;hp=bd89880e4831eb79a5bfbfb9a9e9b6013f7b6588;hpb=30219b822ba8314ef3b8428543ae1b46e2e7ac64;p=lambda.git diff --git a/assignment5.mdwn b/assignment5.mdwn index bd89880e..2078c1c0 100644 --- a/assignment5.mdwn +++ b/assignment5.mdwn @@ -1,10 +1,10 @@ Assignment 5 -Types and OCAML +Types and OCaml --------------- 0. Recall that the S combinator is given by \x y z. x z (y z). - Give two different typings for this function in OCAML. + Give two different typings for this function in OCaml. To get you started, here's one typing for K: # let k (y:'a) (n:'b) = y;; @@ -13,7 +13,7 @@ Types and OCAML - : int = 1 -1. Which of the following expressions is well-typed in OCAML? +1. Which of the following expressions is well-typed in OCaml? For those that are, give the type of the expression as a whole. For those that are not, why not? @@ -68,11 +68,12 @@ Types and OCAML let _ = omega () in 2;; -3. The following expression is an attempt to make explicit the +3. This problem is to begin thinking about controlling order of evaluation. +The following expression is an attempt to make explicit the behavior of `if`-`then`-`else` explored in the previous question. The idea is to define an `if`-`then`-`else` expression using -other expression types. So assume that "yes" is any OCAML expression, -and "no" is any other OCAML expression (of the same type as "yes"!), +other expression types. So assume that "yes" is any OCaml expression, +and "no" is any other OCaml expression (of the same type as "yes"!), and that "bool" is any boolean. Then we can try the following: "if bool then yes else no" should be equivalent to @@ -142,10 +143,12 @@ Baby monads match x with None -> None | Some n -> f n;; -Booleans, Church numbers, and Church lists in System F ------------------------------------------------------- +Booleans, Church numbers, and Church lists in OCaml +--------------------------------------------------- These questions adapted from web materials written by some smart dude named Acar. +The idea is to get booleans, Church numbers, "Church" lists, and +binary trees working in OCaml. Recall from class System F, or the polymorphic λ-calculus. @@ -157,11 +160,10 @@ These questions adapted from web materials written by some smart dude named Acar bool := ∀α. α → α → α true := Λα. λt:α. λf :α. t false := Λα. λt:α. λf :α. f - ifτ e then e1 else e2 := e [τ ] e1 e2 (where τ indicates the type of e1 and e2) - Exercise 1. Show how to encode the following terms. Note that each of these terms, when applied to the + Note that each of the following terms, when applied to the appropriate arguments, return a result of type bool. (a) the term not that takes an argument of type bool and computes its negation; @@ -178,35 +180,36 @@ These questions adapted from web materials written by some smart dude named Acar encoding above, the result of that iteration can be any type α, as long as you have a base element z : α and a function s : α → α. - Exercise 2. Verify that these encodings (zero, succ , rec) typecheck in System F. - (Draw a type tree for each term.) + **Excercise**: get booleans and Church numbers working in OCaml, + including OCaml versions of bool, true, false, zero, succ, add. Consider the following list type: - datatype ’a list = Nil | Cons of ’a * ’a list + type ’a list = Nil | Cons of ’a * ’a list We can encode τ lists, lists of elements of type τ as follows: τ list := ∀α. α → (τ → α → α) → α nilτ := Λα. λn:α. λc:τ → α → α. n - consτ := λh:τ. λt:τ list. Λα. λn:α. λc:τ → α → α. c h (t [α] n c) + makeListτ := λh:τ. λt:τ list. Λα. λn:α. λc:τ → α → α. c h (t [α] n c) - As with nats, The τ list type’s case analyzing elimination form is just application. + As with nats, recursion is built into the datatype. We can write functions like map: map : (σ → τ ) → σ list → τ list := λf :σ → τ. λl:σ list. l [τ list] nilτ (λx:σ. λy:τ list. consτ (f x) y - Exercise 3. Consider the following simple binary tree type: + **Excercise** convert this function to OCaml. Also write an `append` function. + Test with simple lists. - datatype ’a tree = Leaf | Node of ’a tree * ’a * ’a tree + Consider the following simple binary tree type: - (a) Give a System F encoding of binary trees, including a definition of the type τ tree and definitions of - the constructors leaf : τ tree and node : τ tree → τ → τ tree → τ tree. + type ’a tree = Leaf | Node of ’a tree * ’a * ’a tree - (b) Write a function height : τ tree → nat. You may assume the above encoding of nat as well as definitions - of the functions plus : nat → nat → nat and max : nat → nat → nat. + **Excercise** + Write a function `sumLeaves` that computes the sum of all the + leaves in an int tree. - (c) Write a function in-order : τ tree → τ list that computes the in-order traversal of a binary tree. You + Write a function `inOrder` : τ tree → τ list that computes the in-order traversal of a binary tree. You may assume the above encoding of lists; define any auxiliary functions you need.